Digital Curation Workflows Incorporating Forensics Tools and Methods

Cal Lee, University of North Carolina

Tackling Real-World Collection Challenges with Digital Forensics Tools and Methods

Chapel Hill, NC

June 3-5, 2013

Work Flow – The Thing to be Represented

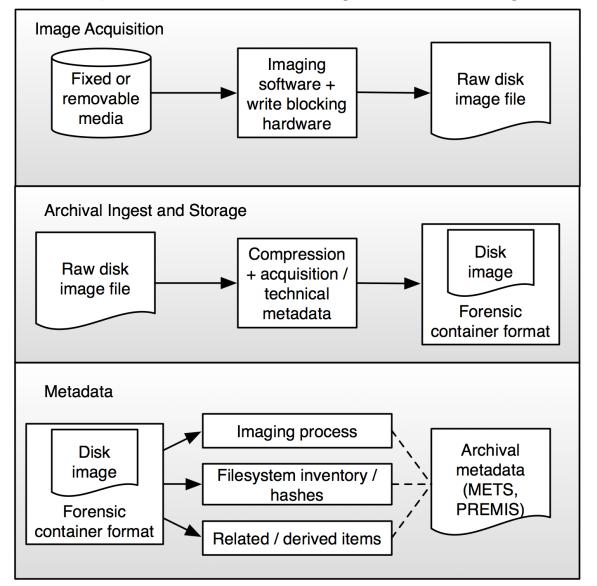
"the sequence of processes through which a piece of work passes from initiation to completion" (Oxford English Dictionary, Second Edition, 1989)

Work Flows as Models – Representations of the Thing

- Explicit, symbolic representation of the workflow
- Usually inspired by new system design or attempts to reengineer a process
- There are many different ways to model a workflow
- But the basic components tend to be similar

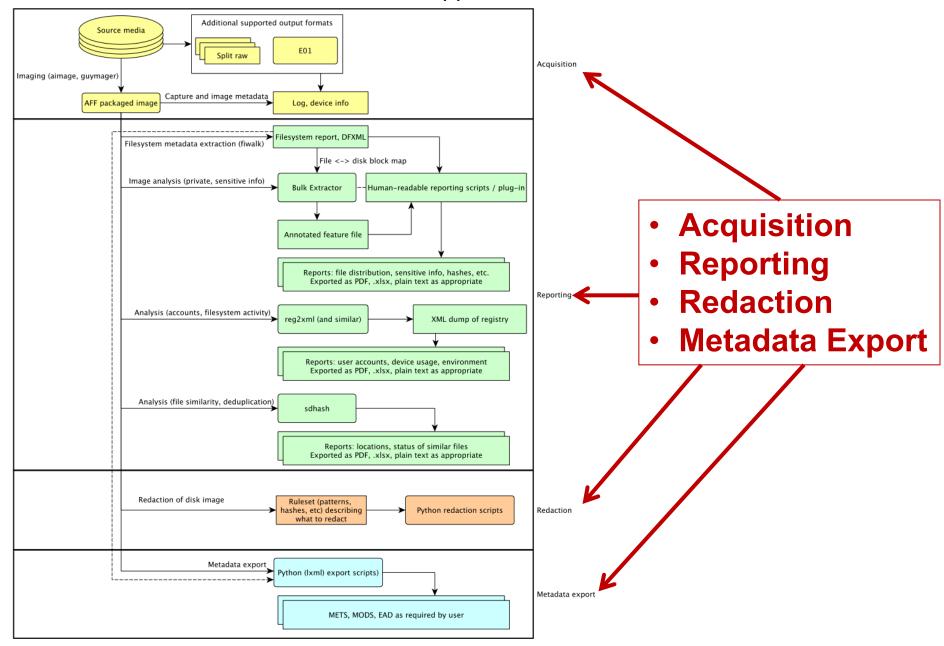
Parts of a Workflow

- Entities/Stages where something happens (e.g. data are transformed, someone makes a decision, data are captured)
- Input(s) control and/or information that flows into an entity/stage
- Output(s) control and/or information that flow out of an entity/stage


Digital Resources - Levels of Representation

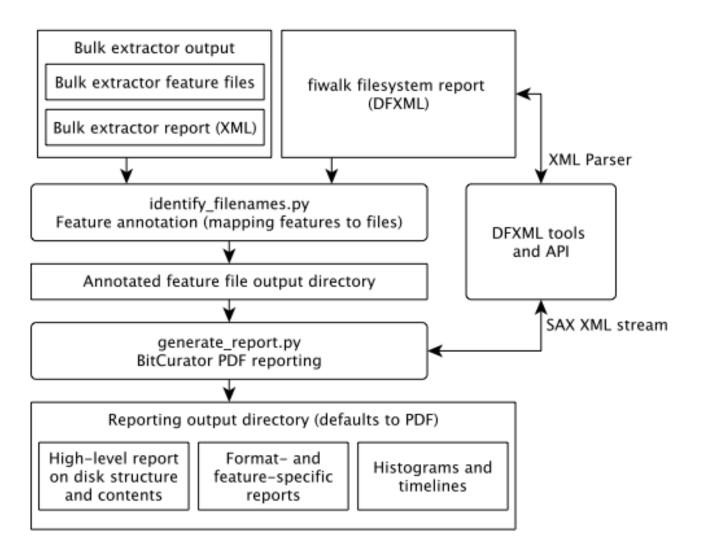
Level	Label	Explanation	
8	Aggregation of objects	Set of objects that form an aggregation that is meaningful	
		encountered as an entity	
7	Object or package	Object composed of multiple files, each of which could	
		also be encountered as individual files	
6	In-application rendering		
5	File through filesystem	Files encountered as discrete set of items with associate	
		paths and file names	
4	File as "raw" bitstream	Bitstream encountered as a continuous series of binary	
		values	
3	Sub-file data structure Discrete "chunk" of data that is part of a larger file		
2	Bitstream through I/O	Series of 1s and 0s as accessed from the storage media	
	equipment	using input/output hardware and software (e.g.	
		controllers, drivers, ports, connectors)	
1	Raw signal stream through	Stream of magnetic flux transitions or other analog	
	I/O equipment	electronic output read from the drive without yet	
		interpreting the signal stream as a set of discrete values	
		(i.e. not treated as a digital bitstream that can be directly	
		read by the host computer)	
0	Bitstream on physical	Physical properties of the storage medium that are	
	medium	interpreted as bitstreams at Level 1	

Digital Resources - Levels of Representation

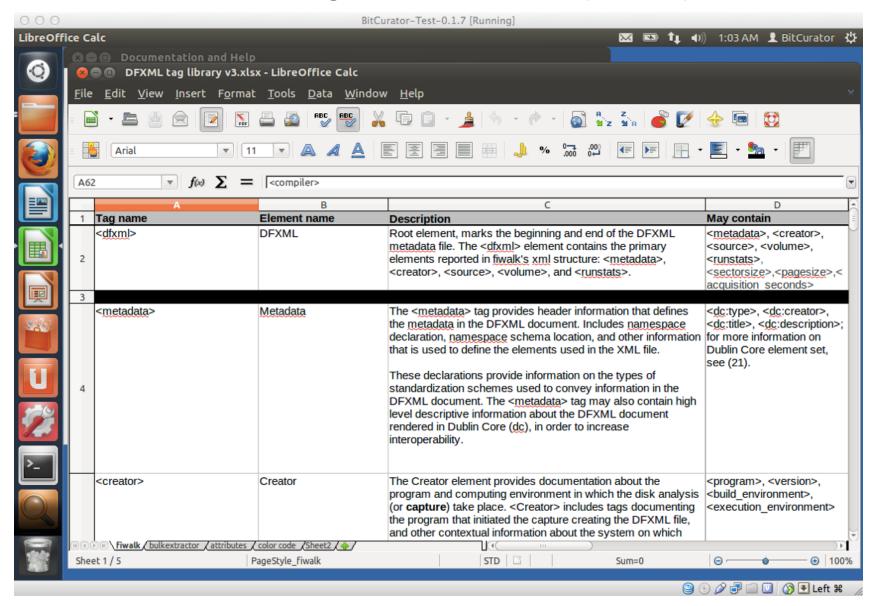

Level	Label	Explanation		
8	Aggregation of objects	Set of objects that form an aggregation that is meaningful		
		encountered as an entity		
7	Object or package	Obje		
		Levels where		
6	In-application rendering	As re		
5	File through filesystem	Files digital forensics		
		paths		
4	File as "raw" bitstream	Bitst methods and		
		value		
3	Sub-file data structure	Discret tools can provide		
2	Bitstream through I/O	Serie		
	equipment	using a lot of assistance		
		contra lot of assistance		
1	Raw signal stream through	Stream or magnetic flux transitions or other analog		
	I/O equipment	electronic output read from the drive without yet		
		interpreting the signal stream as a set of discrete values		
		(i.e. not treated as a digital bitstream that can be directly		
		read by the host computer)		
0	Bitstream on physical Physical properties of the storage medium that a			
medium interpreted as bitstreams at Level 1		interpreted as bitstreams at Level 1		

Storage Media Acquisition and Handling Profile for Digital Repositories*

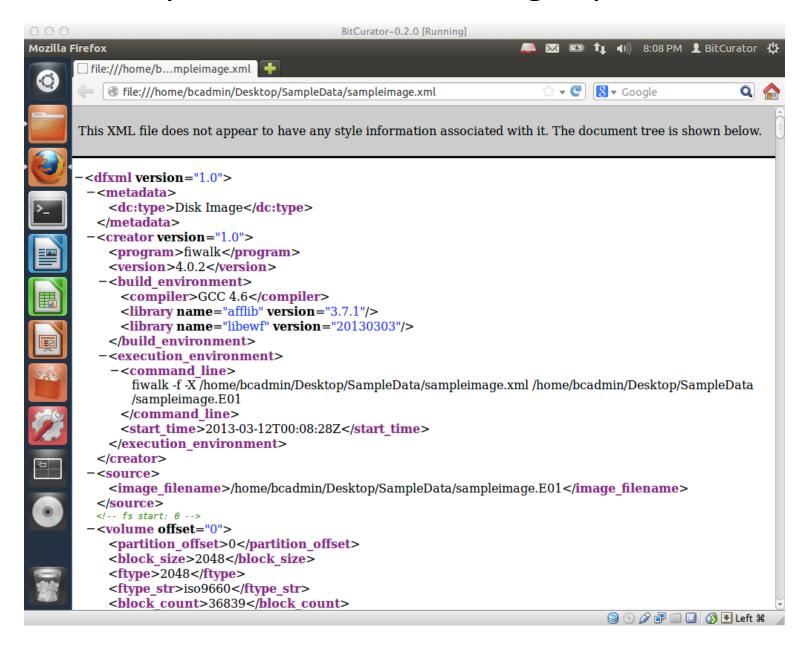
*Woods, Kam, Christopher A. Lee, and Simson Garfinkel. "Extending Digital Repository Architectures to Support Disk Image Preservation and Access." In *JCDL '11: Proceeding of the 11th Annual International ACM/IEEE Joint Conference on Digital Libraries*, 57-66. New York, NY: ACM Press, 2011.


BitCurator-Supported Workflow

See: http://bitcurator.net


Metadata Generated by Forensics Software

Metadata Generation and Reporting


See: Woods, Kam, Christopher Lee, and Sunitha Misra. "Automated Analysis and Visualization of Disk Images and File Systems for Preservation." In *Proceedings of Archiving 2013* (Springfield, VA: Society for Imaging Science and Technology, 2013), 239-244.

Documentation of Digital Forensics XML (DFXML) Elements

http://www.bitcurator.net/2013/02/06/dfxml-tag-library/

You want provenance? We've got provenance.

Exporting Filesystem Metadata - Output from fiwalk (XML)

```
<fileobject>
      <filename>Documents and Settings/All Users/Documents/
                 My Pictures/Sample Pictures/Blue hills.jpg
      </filename>
      <filesize>28521</filesize>
      <alloc>1</alloc>
      <used>1</used>
      <inode>6245</inode>
      <uid>0</uid>
      <qid>0</qid>
      <mtime>1208174400</mtime>
      <ctime>1257729636</ctime>
      <atime>1257729636</atime>
      <crtime>1257729636</crtime>
      <seq>2</seq>
      libmagic>JPEG image data, JFIF standard 1.02
      <br/>
<br/>
te runs>
       <run file offset='0' fs offset='0' img offset='363200512'
         len='0'/>
      </byte runs>
      <hashdigest type='MD5'>
          6fb2a38dc107eacb41cf1656e899cf70
      </hashdigest>
      <hashdigest type='SHA1'>
          4eee44b18576e84de7b163142b537d2fe6231845
      </hashdigest>
</fileobject>
```

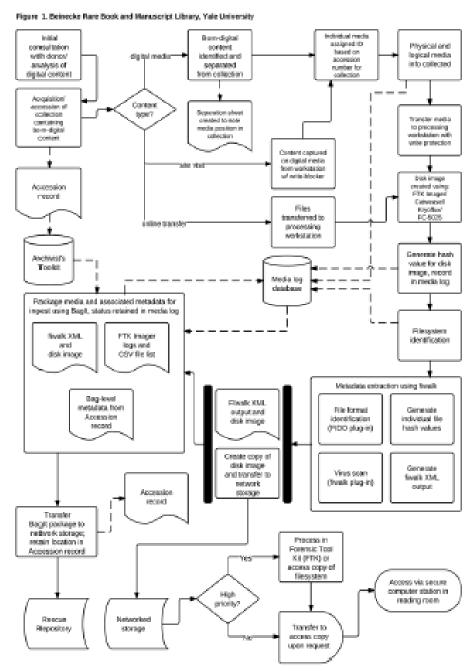
Technical Metadata (about the System Used to do the Capture) in a Bulk Extractor Report

Bulk Extractor Output*

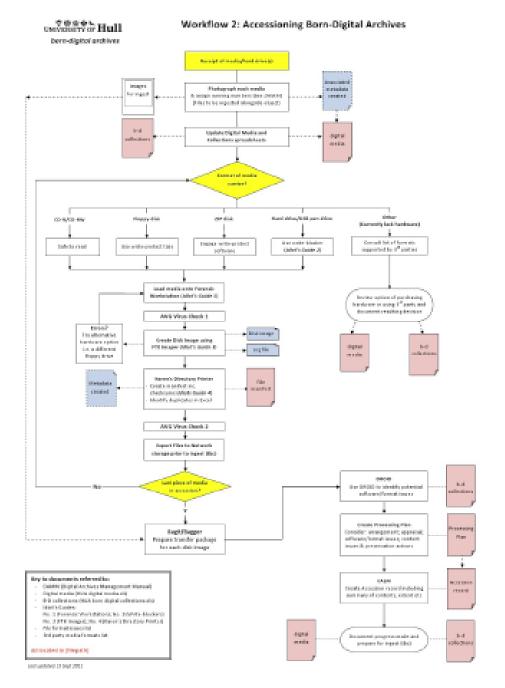
File	Description		
aes_keys.txt	AES encryption keys		
alerts.txt	Processing errors		
ccn.txt	Credit card numbers		
ccn_track2.txt	Credit card "track 2" information, which has previously been found in some bank fraud cases		
domain.txt	Internet domains found on the drive, including dotted-quad addresses found in text		
email.txt	Email addresses		
ether.txt	Ethernet MAC addresses found through IP packet carving of swap files and compressed system hibernation files and fragments		
exif.txt	EXIF data from JPEG images and video segments		
find.txt	Results of specific regular expression searches		
gps.txt	Extracted GSP coordinates from Garmin XML and GPS-enabled JPEG files		
ip.txt	IP addresses found through IP packet carving		
json.txt	Extracted and validated JavaScript Object Notation fragments		
kml.txt	Extracted KML files		

^{*}See http://afflib.org/archives/tag/bulk_extractor

Bulk Extractor Output (continued)*


File	Description		
report.txt	DFMXL file that explains what happened		
rfc822.txt	Email message headers including Date:, Subject:, and Message-ID: fields		
tcp.txt	TCP flow information found through IP packet carving		
telephone.txt	Phone numbers (US and other countries)		
url.txt	URLs, typically found in browser caches, email messages, and pre-compiled into executables		
url_searches.txt	Histogram of terms used in Internet searches		
url_services.txt	Histogram of the domain name portion of all URLs found on the media		
winpefect.txt	Windows prefetch files and fragments, recorded as XML		
wordlist.txt	A list of all "words" extracted from the disk, useful for password cracking		
wordlist_*.txt	The wordlist with duplicates removed, formatted to be imported into a popular password-cracking program		
zip.txt	Information about ZIP file components found on media (including compound files such as MS Office documents)		

^{*}See http://afflib.org/archives/tag/bulk_extractor


Two Sources of Workflow Examples

Martin J. Gengenbach, "The Way We Do it Here': Mapping Digital Forensics Workflows in Collecting Institutions," A Master's Paper for the M.S. in L.S degree. August 2012. http://digitalcurationexchange.org/system/files/gengenbach-forensic-workflows-2012.pdf

AIMS Work Group, "AIMS Born-Digital Collections: An Inter-Institutional Model for Stewardship," January 2012. http://www2.lib.virginia.edu/aims/whitepaper/AIMS_final.pdf

Martin J. Gengenbach, "'The Way We Do it Here': Mapping Digital Forensics Workflows in Collecting Institutions," A Master's Paper for the M.S. in L.S degree. August, 2012.

AIMS Work Group, "AIMS Born-Digital Collections: An Inter-Institutional Model for Stewardship," January 2012.

Other Workflow Examples

- Elford, Douglas, Nicholas Del Pozo, Snezana Mihajlovic, David Pearson, Gerard Clifton, and Colin Webb. "Media Matters: Developing Processes for Preserving Digital Objects on Physical Carriers at the National Library of Australia." Paper presented at the 74th IFLA General Conference and Council, Québec, Canada, August 10-14, 2008. http://archive.ifla.org/lv/ifla74/papers/084-Webb-en.pdf
- Glick, Kevin, and Eliot Wilczek. "Ingest Guide." Tufts University and Yale University, 2006. http://dca.lib.tufts.edu/features/nhprc/reports/ingest/index.html
- Klett, Fanny, Ann Hägerfors, and Kuldar Aas. "State-of-the-Art, Stakeholder Needs, Application Scenarios." PROTAGE Consortium, 2008. http://www.protage.eu/files/D1%201-State-of-the-art-Needs-Scenarios%20ver%201%200.pdf [For presentation of workflow, see especially p.49-71, 80-87]
- Mitchell, Marilyn, ed. *Library Workflow Redesign: Six Case Studies*. Washington, DC: Council on Library and Information Resources, 2007. http://www.clir.org/pubs/reports/pub139/pub139.pdf
- Morris, Steven P. and James Tuttle. "Curation and Preservation of Complex Data: The North Carolina Geospatial Data Archiving Project" Paper presented at DigCCurr2007: An International Symposium on Digital Curation, Chapel Hill, NC, April 18-20, 2007. http://ils.unc.edu/digccurr2007/papers/tuttle_paper_4-3.pdf [See also conference presentation: http://ils.unc.edu/digccurr2007/slides/tuttle_slides_4-3.pdf]
- Müller, Eva, Uwe Klosa, Peter Hansson, and Stefan Andersson. "Archiving Workflow between a Local Repository and the National Archive Experiences from the DiVA Project." Paper presented at the Third ECDL Workshop on Web Archives, Trondheim, Norway, August 21, 2003. http://bibnum.bnf.fr/ecdl/2003/proceedings.php?f=muller
- Owens, Evan. "Automated Workflow for the Ingest and Preservation of Electronic Journals." In *Archiving 2006: Final Program and Proceedings, May 23-26, 2006, Ottawa, Canada*, edited by Stephen Chapman and Scott A. Stovall, 109-12. Springfield, VA: Society for Imaging Science and Technology, 2006. http://www.portico.org/news/Archiving2006-Owens.pdf
- Underwood, W.E. and S.L. Laib. "PERPOS: An Electronic Records Repository and Archival Processing System." Paper presented at DigCCurr2007: An International Symposium on Digital Curation, Chapel Hill, NC, April 18-20, 2007.
 http://ils.unc.edu/digccurr2007/papers/underwood_paper_6-3.pdf [See also conference presentation: http://ils.unc.edu/digccurr2007/slides/underwood_slides_6-3.pdf]
- Vardigan, Mary, and Cole Whiteman. "OAIS Meets ICPSR: Applying the OAIS Reference Model to the Social Science Archive Context."
 Archival Science 7. No. 1 (2007): 73–87. http://www.springerlink.com.libproxy.lib.unc.edu/content/50746212r6g21326/fulltext.pdf

A Big (Common) Idea:

Micro-Services

Merritt - California Digital Library

	Value	Interoperation Annotation Notification	"Lots of uses keeps stuff valuable"
Curation	Service	Application Transformation Search Index Ingest	"Lots of services keeps stuff useful"
Preservation	Context	Interpretation Characterization Inventory	"Lots of description keeps stuff meaningful"
	State	Protection Replication Fixity Storage Identity	"Lots of copies keeps stuff safe"

Figure 8 – Merritt micro-services

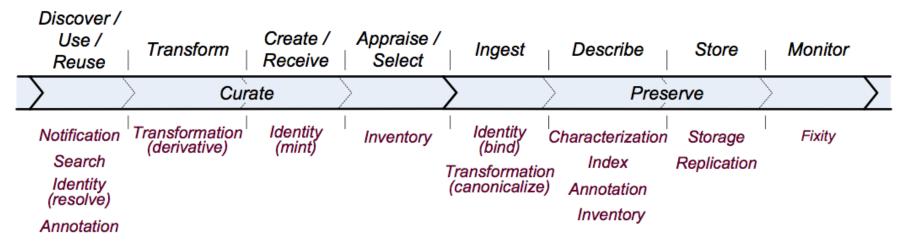
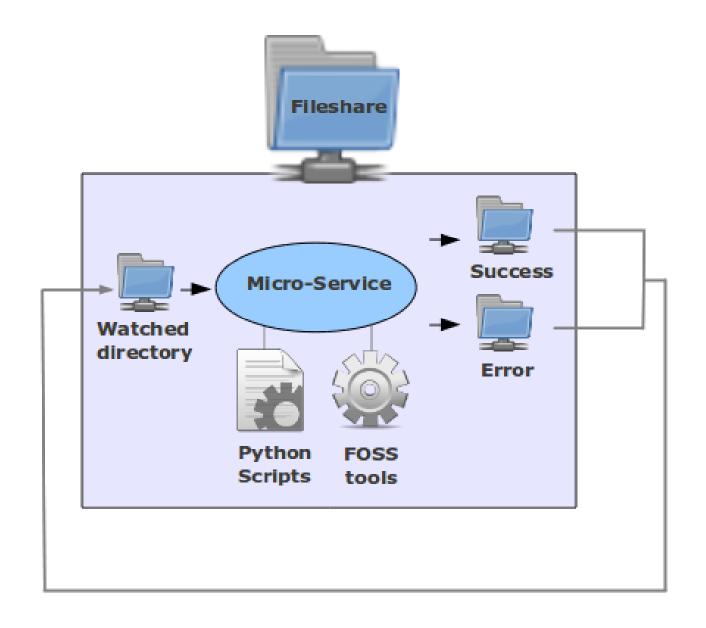
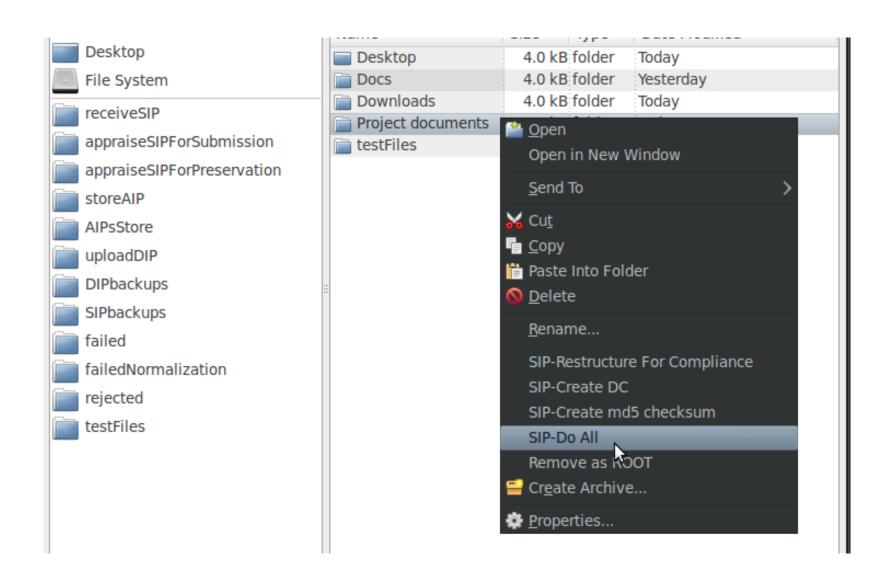
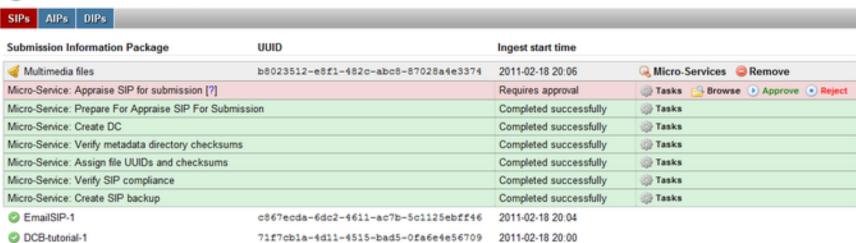
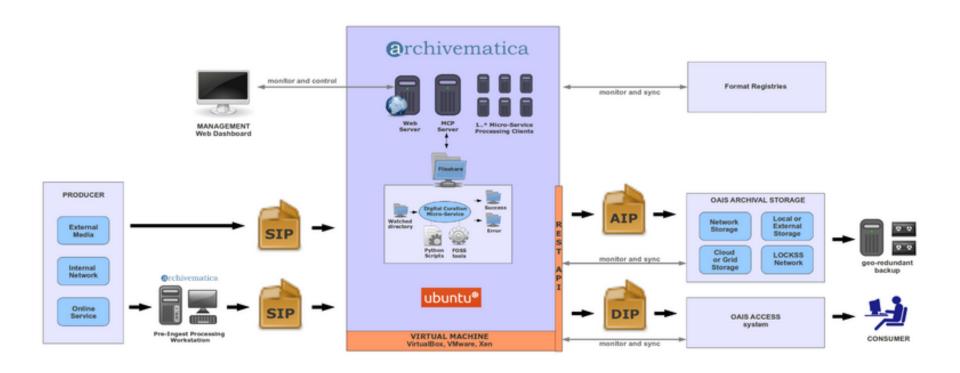
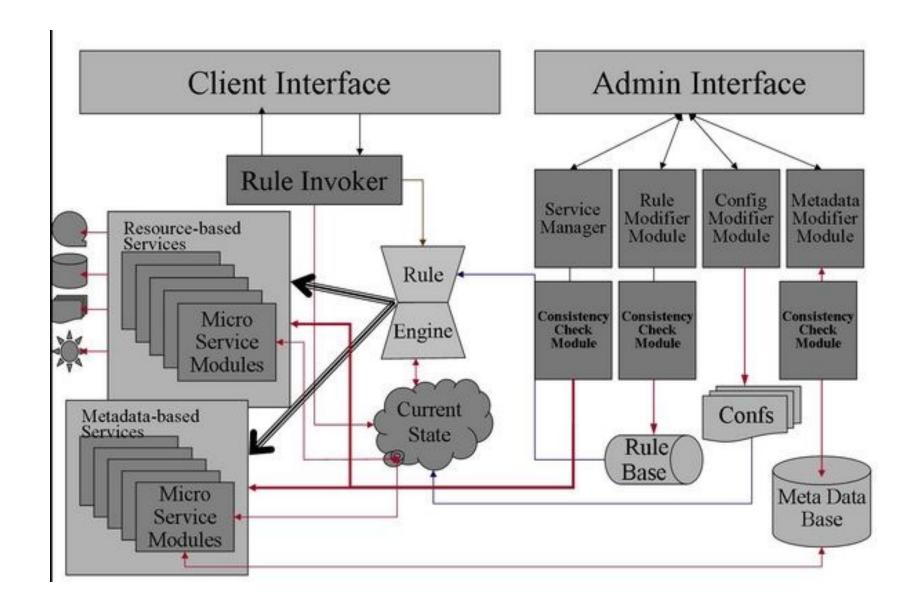




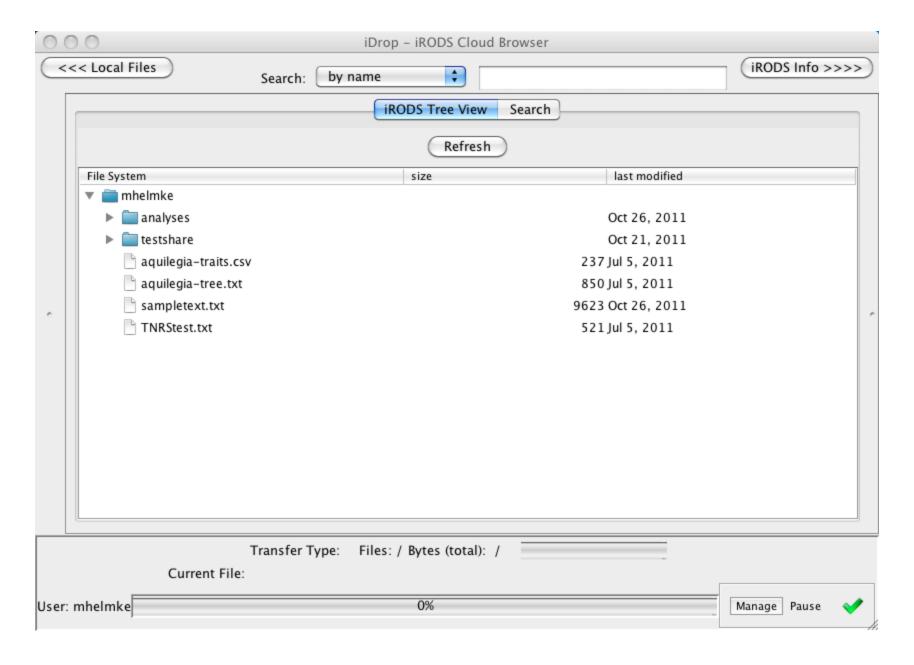
Figure 7 – Micro-service applicability throughout the curation lifecycle [Adapted from Higgins]

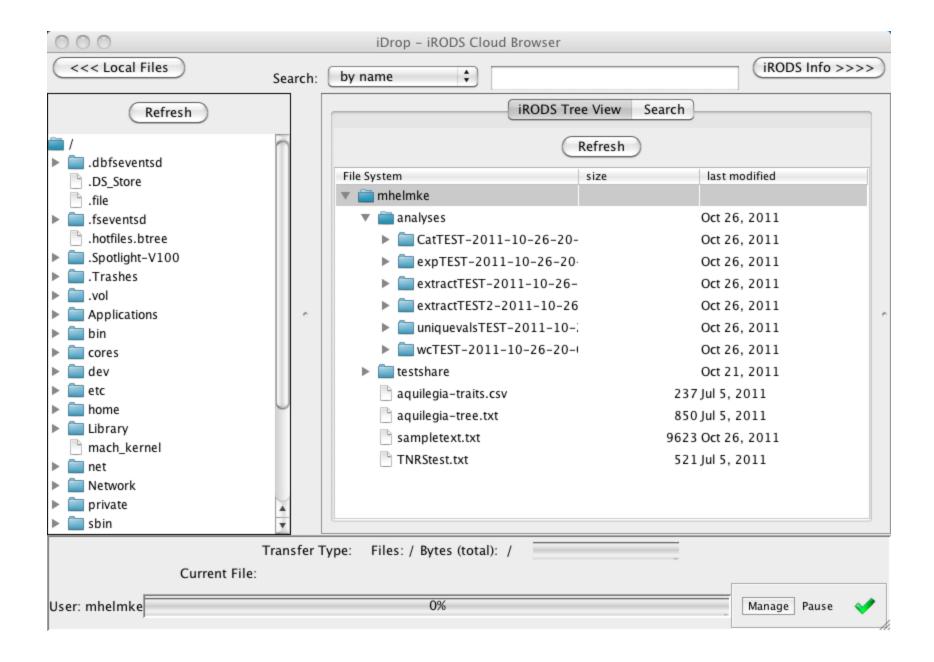
Archivematica - Artefactual Systems

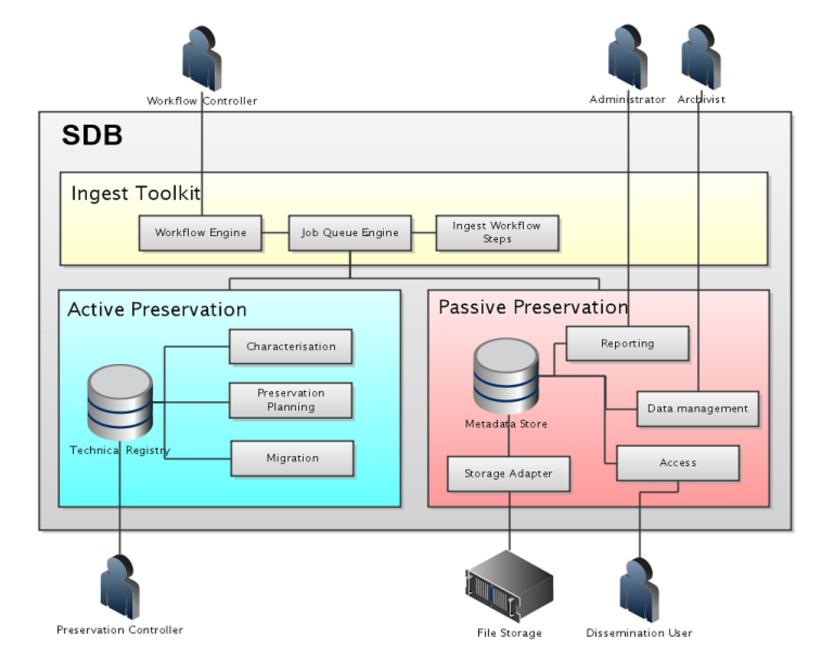


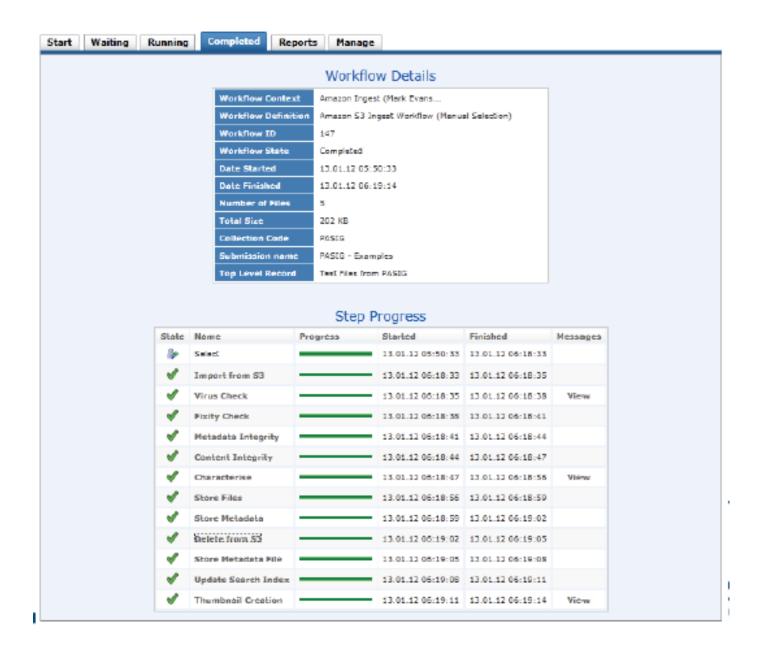

http://www.archivematica.org/wiki/index.php?title=File:Micro-service.png


http://www.archivematica.org/wiki/index.php?title=File:Pre-ingest-1.png


@rchivematica




Integrated Rule-Oriented Data System (iRODS)



Safety Deposit Box (SDB) - Tessella

http://lib.stanford.edu/files/PASIG-DC.ppt

Describing what you want to get done (process modeling)

Identifying a Process*

- Name it
 - Verb-noun e.g. generate AIP, harvest web site
 - Verb-qualifier-noun e.g. generate descriptive information, develop preservation strategy
 - Verb-noun-noun e.g. assign file permissions,
 verify object integrity
- Ensure there is a clearly intended result
 - Test: noun-is-verbed form (e.g. AIP is generated, web site is harvested, object integrity is verified

^{*}Sharp, Alec, and Patrick McDermott. *Wokflow Modeling: Tools for Process Improvement and Applications Development*. 2nd ed. Boston, MA: Artech House, 2009. p.40

Criteria for Identified Result*

- 1. Discrete and identifiable "you can differentiate individual instances of the result, and it makes sense to talk about 'one of them"
- 2. Countable "you can count how many of that result you've produced in an hour, a day, or a week"
- 3. Essential "fundamentally necessary to the operation of the enterprise, not just a consequence of the current implementation," i.e. "must focus on 'what, not who or how"

^{*}Sharp, Alec, and Patrick McDermott. *Wokflow Modeling: Tools for Process Improvement and Applications Development*. 2nd ed. Boston, MA: Artech House, 2009. p.40-41

Exercise

- Consider a part of your total workflow and identify 5 to 10 subprocesses that are directly related to your process.
 - Remember the guidelines from Sharp and Dermott regarding naming processes and sub-processes
 - Name it: Verb-noun, Verb-qualifier-noun or Verb-noun-noun
 - Ensure that there is a clearly intended result Test: noun is verbed form
- Write each sub-process on a sticky note
- Arrange the sticky notes into a workflow, using arrows to connect them on the large papers
- When possible, label the arrows between the sticky notes to clarify how the sub-processes are linked

Post-Mortem Discussion

Software to Support your Workflow

- Did you identify specific tools to support parts of your workflow?
- Did you identify any gaps (no tool support) or overlaps (multiple tools to support)?

Selection and Evaluation of Tools

- How would you decide which tools to adopt?
- What criteria would you use to evaluate the tools you've chosen?

For Further Consideration – The "Three R's"

- Roles (who are the actors who complete steps in the process?)
- Responsibilities (what are the individual steps that each actor performs?)
- Routes (what are the flows and decisions that connect the steps and define the path?