
Sources of Evidence for Interactive Table Completion
Jaime Arguello and Robert Capra

School of Information and Library Science, University of North Carolina at Chapel Hill

[jarguello,rcapra]@unc.edu

ABSTRACT
An important question in interactive information retrieval (IIR) is:

How can we support searchers with specific types of search tasks?

We describe an auxiliary support tool referred to as the “Matrix”.

The Matrix tool was designed to support searchers with compara-
tive search tasks, which require comparing items along different

dimensions. The Matrix was designed as a grid of rows and columns

representing the items and dimensions related to a comparative task.

The Matrix was integrated with a custom-built search interface,

which allowed users to search for information and drag-and-drop

relevant passages directly into cells in the Matrix. We investigate

the following general question: Given a partially completed Matrix,

can a system automatically populate empty cells in the Matrix with

relevant passages? To this end, we conducted two crowdsourced

studies in which participants were assigned comparative tasks and

asked to use our system (integrated search interface + Matrix) to

populate every cell in the Matrix. After gathering this data, we eval-

uated machine-learned models for ranking passages in response to

an empty Matrix cell and partially completed Matrix. We address

two research questions: (RQ1) What are useful types of features

for this predictive task? and (RQ2) How does performance vary

based on the level of Matrix completion? We view our research as

a step towards designing support tools that: (1) help users organize

information while searching and (2) can autocomplete search tasks

by exploiting the task structure and a searcher’s partial solution.

ACM Reference Format:
Jaime Arguello and Robert Capra. 2020. Sources of Evidence for Interactive

Table Completion. In 2020 Conference on Human Information Interaction and
Retrieval (CHIIR ’20), March 14–18, 2020, Vancouver, BC, Canada. ACM, New

York, NY, USA, 5 pages. https://doi.org/10.1145/3343413.3377995

1 INTRODUCTION
Tables are a ubiquitous tool for synthesizing information. Tables

can be used to support tasks that involve understanding relations

between entities or concepts, as well as evaluating alternatives.

Broadly speaking, a table is defined by three types of elements: (1)

a set of instances (rows); (2) a set of attributes (columns) common

to the instances; and (3) a set of attribute-value pairs (cells).

Prior IR research has explored a wide range of predictive tasks
involving tabular data. For example, prior work has considered ad-

hoc table retrieval in response to a keyword query [14] or an input

table (i.e., “querying-by-example”) [16]. Additionally, prior work has

© 2020 Copyright held by the owner/author(s). This is the authors' version of the
work. It is posted here for your personal use. Not for redistribution. The definitive
Version of Record was published as shown below.

CHIIR ’20, March 14–18, 2020, Vancouver, BC, Canada
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-6892-6/20/03. . . $15.00
https://doi.org/10.1145/3343413.3377995

considered table augmentation (i.e., discovering new rows/columns

for an input table) [4, 12, 13], population (i.e., populating empty

cells) [11], and table generation given a query [15].

In this research, we focus on table population—populating a

partially completed table with relevant information. However, com-

pared to prior work, we focus on table population in the context

of a comparative information-seeking task. To illustrate, imagine a

user interested in buying a new car. This type of task may require

comparing alternatives along dimensions that are important to the

user, such as resale value, maintenance costs, fuel efficiency, horse-

power, etc. To make an informed purchase decision, this user might

search for information and generate a table. Using existing tools,

this searcher might use a web search engine to find information

and an external, non-integrated spreadsheet tool to synthesize in-

formation in the form of a table. In our research, we envision a

system that can provide query-based search and automatic table

population in an integrated fashion.

To support comparative information-seeking tasks such as the

one above, we developed a tool called the “Matrix” (Figure 1). The

Matrix was designed as a grid of rows and columns. The rows

were designed to correspond to alternatives and the columns were

designed to correspond to dimensions associated with the compar-

ative task. The Matrix was integrated into a custom-built search

system that allowed users to search for information and drag-and-

drop (or copy-and-paste) textual passages from pages found during

the search directly into cells in the Matrix.

Integrated note-taking tools such as the Matrix pose important

research questions. From a user’s perspective, can structured note-

taking tools such as the Matrix help searchers complete compar-

ative tasks? For example, can they help searchers keep track of

their progress and maintain awareness of knowledge gaps? From

a system’s perspective, can integrated note-taking tools such as

the Matrix help search systems find relevant information? In other

words, can a search system use a partially completed Matrix to

automatically populate the remaining empty cells? If so, what are

valuable sources of evidence? Is it evidence derived directly from

the textual passages added to the already populated cells? Or is it ev-

idence derived from user interactions (e.g., queries, clicks) associated
with the already populated cells? Finally, how does autocompletion

performance depend on the number of previously populated cells?

In this paper, we investigate algorithms for autocompleting a

partially completed Matrix. To this end, we conducted two crowd-

sourced studies in which participants were assigned comparative

tasks and were asked to search for information and complete the

Matrix. After gathering this data, we performed experiments using

learning-to-rank to autocomplete a partially completed Matrix. We

cast this task as a passage-ranking task. The input to the system is a

partially completed Matrix and a target empty cell, and the goal for

the system is to rank passages from the underlying collection that

are relevant to the cell. We address two main research questions:

https://doi.org/10.1145/3343413.3377995
https://doi.org/10.1145/3343413.3377995

‚ RQ1: What types of evidence are most effective for ranking

passages for an empty Matrix cell? Using a learning-to-ranking

framework, we evaluate different types of features for ranking

passages for a given target cell and partially completed Matrix.

We compare features derived from other cells in the same row
vs. other cells in the same column as the target empty cell. Ad-

ditionally, we compare features derived from passages added to

other cells vs. search interactions associated with other cells.

‚ RQ2: How does passage-ranking effectiveness vary based on the

number of Matrix cells already populated?

2 RELATEDWORK
Prior work has focused on different predictive tasks involving tabu-

lar data, including table augmentation (i.e., finding new rows/columns) [4,

11, 13], table population (i.e., populating empty cells) [11], and end-

to-end table generation given a keyword query [15].

Discovering new table rows (i.e., entities) is closely related to the

task of entity set expansion—finding new entities of the same type as

a set of input “seeds”. Approaches to entity set expansion exploit the

fact that related entities appear in similar contexts—are surrounded
by similar words [3], are embedded in similar markup text (e.g.,

HTML) [10], have similar attributes in a knowledge base [1], and

appear in the same columns in a corpus of tables [9]. Beyond entity

expansion, prior work has also focused on attribute expansion (i.e.,

columns) and table population (i.e., cells). Kopliku et al. [4] focused

on attribute expansion given two types of input: a single entity (e.g.,

U.S.A.) or a set of related entities (e.g., U.S.A., Canada, Mexico). To

this end, their approach aimed to discover new attributes using a

large table corpus. The system achieved greater performance when

given a set of entities (vs. only one). Zhang and Balog [13] proposed
algorithms for both entity and attribute expansion given an input

table. New entities/attributes were discovered using DBPedia and a

large table corpus. Results found that new attributes (i.e., columns)

could be used to discover new entities (i.e., rows) and vice-versa.

Yakout et al. [11] developed a system for augmenting an input table

with new columns (along with column headings and populated

cells). Their approach used machine learning to match the input

table with related tables in a large table corpus. Zhang and Ba-

log [12] developed a system for end-to-end table generation given

a keyword query. The task was decomposed into three subtasks:

(1) finding entities, (2) finding attributes, and (3) cell population.

Subtasks 1 and 2 were performed iteratively, leveraging the cur-

rent set of entities/attributes to find other entities/attributes. Cell

population was performed heuristically. DBPedia and a large table

corpus were used to support all three subtasks.

In relation to this prior work, our research focuses on table

population—finding relevant information for empty cells in an input

table. However, compared to prior work, our problem setting is

novel in several ways. First, the studies above focused on entity-
based tables (e.g., Pink Floyd albums) in which the cells contain

entities (e.g., record label), numerical values (e.g., release date), or

short spans of text describing attribute values (e.g., hit song). In our

case, the table cells contain textual passages (1-4 sentences) from an

underlying document collection. Second, in our setting, table cells

can have multiple (even many) relevant passages in the collection.

Third, we focus on table population in the context of interactive
search. Thus, we evaluate the effectiveness of features derived from

Empty Cell

Figure 1: Matrix Tool
textual passages in other cells as well as features derived from

search interactions that resulted in specific passages being added

to other cells. Finally, all the research above used structured data

sources (i.e., table corpora and knowledge bases) to inform the cell

population task. Using structured data sources influences the nature

of the task. For example, cell population boils down to finding the

right attribute-value in a knowledge base or the right cell in a table

corpus. In our case, the task is to rank passages from an unstructured

textual corpus using evidence from the partially completed table.

3 USER STUDIES
Search Interface and Matrix Tool: To investigate algorithms for

interactive table completion, we developed a system with two inte-
grated components: (1) a custom-build search interface and (2) the

Matrix (Figure 1). TheMatrix was developed as an experimental tool

to support users with comparative search tasks. The Matrix was de-

signed as a table of rows and columns, where the rows are the items

being compared and the columns are the dimensions. In our studies

(described below), participants were asked to search for information

and drag-and-drop relevant passages into cells in the Matrix. Par-

ticipants could access the Matrix by clicking an “Open Matrix Tool”

button on the search interface. Clicking this button displayed the

Matrix in a pop-up window. We used Javascript to instrument the

drag-and-drop functionality of the system—allowing participants

to drag-and-drop a passage from a landing page (rendered by our

system) into a Matrix cell. Additionally, we used Javascript to log

user interactions on the search interface and Matrix.

Overview of Studies: Two studies (Study 1 and 2) were con-

ducted to gather user interaction data from searchers completing

the Matrix for a given task. Both studies were run on Amazon Me-

chanical Turk (Mturk). Study 1 and 2 had the same protocol but

involved different search tasks and document collections. Study 1

used the New York Times (NYT) corpus distributed by the LDC and

Study 2 used the TRECWashington Post (WAPO) corpus distributed

by NIST. In both studies, participants were assigned comparative

tasks that required comparing three items along three dimensions.

The exact items/dimensions were specified in the task description.

For example, one of our tasks asked participants to compare three

specific plane crashes/incidents across three dimensions: (1) loca-

tion of incident, (2) number of injuries/casualties, and (3) cause of

incident. We developed 40 tasks (20 per study).

As the main objective of the task, participants were asked to

search for information using the custom-built search system and

drag-and-drop at least one relevant passage into each Matrix cell.

Participants could issue queries and filter search results by year

and by topic. The interface retrieved results using Lucene’s imple-

mentation of the query-likelihood model with Dirichlet smoothing.

Protocol: Study 1 and 2 followed the same protocol. Each Mturk

Human Intelligence Task (HIT) involved completing a 3 ˆ 3 Ma-

trix for a comparative task. Before accepting the HIT, participants

were provided with instructions and a video introducing the Ma-

trix. Upon accepting the HIT, participants were directed to the

main search interface, which included an “Open Matrix Tool” but-

ton. Clicking this button displayed a pop-up window with the

task description, the (initially empty) Matrix, and a “Done with

Task” button. The Matrix contained labeled rows/columns for the

three items/dimensions associated with the assigned task. After

searching for information and adding passages to every Matrix cell,

participants could click the “Done with Task” button to receive a

completion code and submit the HIT. Participants were compen-

sated US$3.00 per HIT. Each task was completed by 20 workers, for

a total of 800 search sessions (i.e., 2 studies ˆ 20 tasks per study

ˆ 20 sessions per task). Tasks were assigned randomly except that

participants could not complete the same task more than once.

4 ALGORITHMS AND FEATURES
Given the data gathered for Studies 1 and 2, we evaluated models

for ranking passages for a specific empty cell, denoted as p𝑖, 𝑗q.

Conceptually, one could view each target cell p𝑖, 𝑗q as a “query”

comprised of information from other cells in the Matrix. In this

respect, each study produced 3,600 “queries” for training and testing

(i.e., 20 tasks per study ˆ 20 redundant sessions per task ˆ 9 cells

per completed matrix). For the purpose of ranking passages for a

target matrix cell p𝑖, 𝑗q, we used a learning-to-rank framework. We

used the implementation of Coordinate Ascent [5] available with

the Lemur RankLib toolkit.

We explain our approach and features using the following no-

tation. First, let p𝑖, 𝑗q denote the empty cell for which we want to

rank passages. Let 𝑖 and 𝑗 the cell’s row and column. Given p𝑖, 𝑗q,

let Pp𝑖, 𝑗q denote the set of candidate passages to rank and 𝑝 denote

a single passage in Pp𝑖, 𝑗q. Every passage dropped into a matrix cell

originated from a specific document. We use 𝑑𝑜𝑐p𝑝q to denote the

document containing 𝑝 . Similarly, every dropped passage originated

from a participant issuing a query and clicking on a search result.

We use Qp𝑖,␣𝑗q and Qp␣𝑖, 𝑗q to denote the set of queries resulting in
passages added to other cells in row 𝑖 and other cells in column 𝑗 .

Similarity, we use Cp𝑖,␣𝑗q and Cp␣𝑖, 𝑗q to denote the set of clicked
snippets resulting in passages added to other cells in row 𝑖 and

other cells in column 𝑗 . We generated three categories of features.

Our features assume that passages relevant to p𝑖, 𝑗q are similar or

related to passages added to other cells in row 𝑖 and column 𝑗 .

Label Features: We generated 6 features from the row and

column labels associated with cell p𝑖, 𝑗q. To generate these fea-

tures, we treated the row/column labels as queries and ranked

passages/documents using the query-likelihood model.

(1) Given the label for row 𝑖 , the reciprocal rank of 𝑝 .

(2) Given the label for column 𝑗 , the reciprocal rank of 𝑝 .

(3) Given the concatenated labels for 𝑖 and 𝑗 , the reciprocal rank of 𝑝 .

(4) Given the label for row 𝑖 , the reciprocal rank of 𝑑𝑜𝑐p𝑝q.

(5) Given the label for column 𝑗 , the reciprocal rank of 𝑑𝑜𝑐p𝑝q.

(6) Given the concatenated labels for 𝑖 and 𝑗 , the reciprocal rank of 𝑑𝑜𝑐p𝑝q.

Passage Features: We generated 34 features from passages

added to other cells in row 𝑖 and other cells in column 𝑗 . For each of

the first 8 items below, we generated 4 features by considering the

min, max, mean, and st. dev. of comparisons with other passages

in the same row/column. To compute the GloVe cosine similar-

ity features, we used the pre-trained GloVe word embeddings [7]

and represented each passage/snippet using its TF.IDF-weighted

average word embedding [6].

(1) TF.IDF cosine similarity between 𝑝 and other passages in row 𝑖 .

(2) TF.IDF cosine similarity between 𝑝 and other passages in column 𝑗 .

(3) GloVe cosine similarity between 𝑝 and other passages in row 𝑖 .

(4) GloVe cosine similarity between 𝑝 and other passages in column 𝑗 .

(5) Jaccard similarity between categories associated with 𝑑𝑜𝑐p𝑝q and doc-

uments associated with other passages in row 𝑖 .

(6) Jaccard similarity between categories associated with 𝑑𝑜𝑐p𝑝q and doc-

uments associated with other passages in column 𝑗 .

(7) Publication year difference between 𝑑𝑜𝑐p𝑝q and documents associated

with other passages in row 𝑖 .

(8) Publication year difference between 𝑑𝑜𝑐p𝑝q and documents associated

with other passages in column 𝑗 .

(9) Number of passages in row 𝑖 that also originated from 𝑑𝑜𝑐p𝑝q.

(10) Number of passages in column 𝑗 that also originated from 𝑑𝑜𝑐p𝑝q.

Interaction Features: We generated 32 user interaction fea-

tures that considered the queries and clicks that resulted in passages

being added to other cells in row 𝑖 and column 𝑗 . For each of the 8

items below, we generated 4 features by considering the min, max,

mean, and st. dev. of comparisons with queries/clicks that resulted

in passages dropped into other cells in same row/column.

(1) Given queries in Qp𝑖,␣𝑗q, reciprocal rank of 𝑝 .

(2) Given queries in Qp␣𝑖,𝑗q, reciprocal rank of 𝑝 .

(3) Given queries in Qp𝑖,␣𝑗q, reciprocal rank of 𝑑𝑜𝑐p𝑝q.

(4) Given queries in Qp␣𝑖,𝑗q, reciprocal rank of 𝑑𝑜𝑐p𝑝q.

(5) TF.IDF cosine similarity between 𝑝 and snippets in Cp𝑖,␣𝑗q.

(6) TF.IDF cosine similarity between 𝑝 and snippets in Cp␣𝑖,𝑗q.

(7) GloVe cosine similarity between 𝑝 and snippets in Cp𝑖,␣𝑗q.

(8) GloVe cosine similarity between 𝑝 and snippets in Cp␣𝑖,𝑗q.

5 EVALUATION METHODOLOGY
We trained and tested models to rank passages for a given matrix

cell p𝑖, 𝑗q. Relevance labels for training/testing were derived from

passages added to cell p𝑖, 𝑗q by any of the 20 participants who com-

pleted the same task. All passages added to p𝑖, 𝑗q were considered

relevant and all others not relevant. To generate candidate passages

Pp𝑖, 𝑗q for p𝑖, 𝑗q, we constructed a “query” by concatenating the

row/column labels and included all passages from the top-100 doc-

uments. Models were trained/tested using 20-fold cross-validation

(separately for the NYT and WAPO testbeds). To test the general-

izability of models to new tasks, each training fold included data

from 19 tasks and each test fold included data for the held-out task.

6 RESULTS
Table 1 shows NDCG@30 performance for both evaluation testbeds,

Study 1 (NYT corpus and tasks) and Study 2 (WAPO corpus and

tasks). The columns in Table 1 correspond to models trained using

different sets of features (RQ1). Column all indicates performance

for models trained using all features. The rows correspond to mod-

els trained under different levels of Matrix completion (RQ2), from

8 populated cells (only p𝑖, 𝑗q empty) to only 1 populated cell. The

percentage values indicate the percentage drop in performance

compared to all for the same row (i.e., same level of Matrix com-

pletion). Statistical significance was tested using the randomization

test [8]. Symbol ‘Ź’ denotes a statistically significant difference com-

pared to all after Bonferroni correction. Given our large dataset

(3,600 target cells p𝑖, 𝑗q per testbed), most differences were signifi-

cant (even after correction). Thus, we focus our attention on large

performance differences. With respect to RQ1 and RQ2, results on

both testbeds found similar trends.

RQ1: To investigate RQ1, we conducted two different feature

ablation analyses. Our approach to passage-ranking assumes that

relevant passages for cell p𝑖, 𝑗q are similar (or related) to other

passages in row 𝑖 and column 𝑗 . Thus, our first ablation analysis

compares models trained using only features derived from the

same row (only.row) versus only features derived from the same

column (only.col). Our results suggest two main trends. First, both

groups of features added value. Ignoring row features (only.col)

and ignoring column features (only.row) both resulted large drops

in performance compared to all. Second, row features were much

more predictive than column features (only.row " only.col).

Recall that rows corresponded to items and columns to dimensions.

Our second ablation analysis compares models using different

groups of features: label, passage, and interaction features. Our

results suggest three main trends. First, using label features alone

(only.label) produced the worst performance (all " only.label).

Second, passage features contributed more to performance than

interaction features (label+pass > label+inter). Finally, interac-

tion features provided some value (label+inter > only.label), but

not when we also included passage features (all « label+pass).

In other words, interaction features did not contribute valuable

evidence that was complementary to passage features.

RQ2: Table 1 shows performance for different levels of table com-

pletion. Our RQ2 results suggest three main trends. As expected,

passage-ranking performance improves as the Matrix is more com-

plete. Second, this trend was observed for all models using features

derived from Matrix cells (all, only.row, only.col, label+pass,

label+inter). The same trend was not observed for label features

because they do not rely on other cells being populated. Slight

variations for only.label are due to the random parameter initial-

ization in the Coordinate Ascent algorithm. Third, as the Matrix is

completed, performance increases at a slower rate (i.e., diminishing

marginal returns). To illustrate, across all feature-combinations,

the difference in performance between 1 and 2 populated cells is

greater than between 7 and 8 populated cells.

7 DISCUSSION AND CONCLUSION
Our results have implications for designing tools such as the Matrix.

Row vs. Column Features: Our passage-ranking approach as-

sumes that passages relevant to an empty cell are similar (or related)

to passages added to other cells in the same row (item) and col-

umn (dimension). Our RQ1 results validate this assumption (all

> only.row, only.col). Thus, Passage-ranking algorithms should

harness evidence from the same row/column as an empty cell.

While both feature types helped, row features were more pre-

dictive than column features (only.row " only.col). We see two

possible explanations for this trend. In our case, items were typically

concrete nouns with specific names (e.g., Hurricane Katrina). Con-

versely, many of our dimensions were abstract concepts with more

Table 1: Passage-ranking performance (NDCG@30).
cells only.row only.col only.labels labels+inter labels+pass

pop. all (no col) (no row) (no pass/inter) (no pass) (no inter)

8 .299 .230 (-23.1%)
Ź

.100 (-66.6%)
Ź

.197 (-34.1%)
Ź

.240 (-19.7%)
Ź

.296 (-1.0%)

7 .290 .223 (-23.1%)
Ź

.098 (-66.2%)
Ź

.200 (-31.0%)
Ź

.238 (-17.9%)
Ź

.287 (-1.0%)

6 .281 .217 (-22.8%)
Ź

.092 (-67.3%)
Ź

.199 (-29.2%)
Ź

.234 (-16.7%)
Ź

.278 (-1.1%)

5 .272 .210 (-22.8%)
Ź

.082 (-69.9%)
Ź

.198 (-27.2%)
Ź

.232 (-14.7%)
Ź

.269 (-1.1%)

4 .261 .205 (-21.5%)
Ź

.071 (-72.8%)
Ź

.198 (-24.1%)
Ź

.225 (-13.8%)
Ź

.260 (-0.4%)

3 .247 .194 (-21.5%)
Ź

.057 (-76.9%)
Ź

.197 (-20.2%)
Ź

.219 (-11.3%)
Ź

.243 (-1.6%)
Ź

2 .233 .188 (-19.3%)
Ź

.042 (-82.0%)
Ź

.200 (-14.2%)
Ź

.214 (-8.2%)
Ź

.235 (0.9%)

1 .217 .175 (-19.4%)
Ź

.025 (-88.5%)
Ź

.198 (-8.8%)
Ź

.204 (-6.0%)
Ź

.214 (-1.4%)

(a) NYT Results
cells only.row only.col only.labels labels+inter labels+pass

pop. all (no col) (no row) (no pass/inter) (no pass) (no inter)

8 .345 .294 (-14.8%)
Ź

.095 (-72.5%)
Ź

.227 (-34.2%)
Ź

.293 (-15.1%)
Ź

.339 (-1.7%)
Ź

7 .337 .288 (-14.5%)
Ź

.091 (-73.0%)
Ź

.227 (-32.6%)
Ź

.287 (-14.8%)
Ź

.331 (-1.8%)
Ź

6 .329 .281 (-14.6%)
Ź

.086 (-73.9%)
Ź

.229 (-30.4%)
Ź

.282 (-14.3%)
Ź

.323 (-1.8%)
Ź

5 .318 .272 (-14.5%)
Ź

.079 (-75.2%)
Ź

.226 (-28.9%)
Ź

.279 (-12.3%)
Ź

.315 (-0.9%)

4 .305 .261 (-14.4%)
Ź

.068 (-77.7%)
Ź

.227 (-25.6%)
Ź

.274 (-10.2%)
Ź

.302 (-1.0%)

3 .293 .249 (-15.0%)
Ź

.062 (-78.8%)
Ź

.229 (-21.8%)
Ź

.268 (-8.5%)
Ź

.288 (-1.7%)
Ź

2 .278 .235 (-15.5%)
Ź

.049 (-82.4%)
Ź

.227 (-18.3%)
Ź

.261 (-6.1%)
Ź

.279 (0.4%)

1 .259 .223 (-13.9%)
Ź

.035 (-86.5%)
Ź

.235 (-9.3%)
Ź

.245 (-5.4%)
Ź

.257 (-0.8%)
Ź

(b) WAPO Results

varied language (e.g., government response). Results from prior

research also suggest that searching for specific items is easier than

specific dimensions [2]. A second possibility is that documents tend

to focus on items (e.g., entities or events) rather than dimensions.

This is certainly the case for news articles.

Passage vs. Interaction Features: Our RQ1 results suggest

that both passage and interaction features provided valuable ev-

idence for ranking passages (labels+pass, labels+inter > la-

bels.only). This trend suggests that passages relevant to an empty

cell are not only similar to other passages in the same row/column

in a “text similarity” sense. They were also found by participants

using similar search interactions (e.g., similar queries and clicked

results). While both feature types helped, interaction features did
not contribute evidence that was complementary to passage fea-

tures (all «label+pass). Future work will consider other types of
interaction features that may provide complementary evidence.

Effects of Matrix Completion: As expected, passage-ranking
performance improved as the Matrix was more complete (RQ2).

This result suggests that interactive table population systems such

as the Matrix should be more confident as more data is added to the

table. Interestingly, as the Matrix was more complete, performance

improved with slightly diminishing marginal returns.

Concluding Remarks: The Matrix tool was developed to help

users organize information during comparative tasks. It is an ex-

ample of a structured note-taking tool that can be integrated into a

search system to assist users with specific task types. Our results

suggest that systems may be able to exploit the structure of a task

to autocomplete a user’s partial solution.
While our results are encouraging, open questions remain. In

future work, we will evaluate the Matrix tool from a searcher’s

perspective. For example, does the Matrix help searchers track

their progress and maintain awareness of gaps in knowledge? Fu-

ture work may also consider other tools designed to autocomplete

tasks with different types of structure. For example, imagine a

tool that helps searchers organize information into clusters during

exploratory search tasks. Such a tool may be able to use the infor-

mation in the current set of clusters (and associated interaction

data) to retrieve related documents/passages.

Acknowledgements:This researchwas supported byNSF grants
IIS-1552587 and IIS-1451668.

REFERENCES
[1] Marc Bron, Krisztian Balog, and Maarten de Rijke. 2013. Example Based Entity

Search in the Web of Data. In ECIR. Springer Berlin Heidelberg, 392–403.

[2] Robert Capra, Jaime Arguello, Heather O’Brien, Yuan Li, and Bogeum Choi.

2018. The Effects of Manipulating Task Determinability on Search Behaviors and

Outcomes. In SIGIR. ACM, 445–454.

[3] Yeye He and Dong Xin. 2011. SEISA: Set Expansion by Iterative Similarity

Aggregation. In WWW. ACM, 427–436.

[4] Arlind Kopliku, Mohand Boughanem, and Karen Pinel-Sauvagnat. 2011. Towards

a Framework for Attribute Retrieval. In CIKM. ACM, 515–524.

[5] Donald Metzler and W. Bruce Croft. 2007. Linear Feature-based Models for

Information Retrieval. Information Retrieval 10, 3 (2007), 257–274.
[6] Bhaskar Mitra and Nick Craswell. 2018. An Introduction to Neural Information

Retrieval. Foundations and Trends in Information Retrieval 13 (2018), 1–126.
[7] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. GloVe:

Global Vectors for Word Representation. In Empirical Methods in Natural Lan-
guage Processing (EMNLP). 1532–1543.

[8] Mark D. Smucker, James Allan, and Ben Carterette. 2007. A Comparison of

Statistical Significance Tests for Information Retrieval Evaluation. In CIKM. ACM,

623–632.

[9] Chi Wang, Kaushik Chakrabarti, Yeye He, Kris Ganjam, Zhimin Chen, and

Philip A. Bernstein. 2015. Concept Expansion Using Web Tables. In WWW.

IW3C2, 1198–1208.

[10] Richard C. Wang and William W. Cohen. 2007. Language-Independent Set

Expansion of Named Entities Using the Web. In ICDM. IEEE Computer Society,

342–350.

[11] Mohamed Yakout, Kris Ganjam, Kaushik Chakrabarti, and Surajit Chaudhuri.

2012. InfoGather: Entity Augmentation and Attribute Discovery by Holistic

Matching with Web Tables. In SIGMOD. ACM, 97–108.

[12] Shuo Zhang. 2018. SmartTable: Equipping Spreadsheets with Intelligent Assis-

tance Functionalities. In SIGIR. ACM, New York, NY, USA, 1447–1447.

[13] Shuo Zhang and Krisztian Balog. 2017. EntiTables: Smart Assistance for Entity-

Focused Tables. In SIGIR. ACM, 255–264.

[14] Shuo Zhang and Krisztian Balog. 2018. Ad Hoc Table Retrieval Using Seman-

tic Similarity. In WWW. International World Wide Web Conferences Steering

Committee, 1553–1562.

[15] Shuo Zhang and Krisztian Balog. 2018. On-the-fly Table Generation. In SIGIR.
ACM, 595–604.

[16] Shuo Zhang and Krisztian Balog. 2019. Recommending Related Tables. CoRR
abs/1907.03595 (2019). http://arxiv.org/abs/1907.03595

http://arxiv.org/abs/1907.03595

	Abstract
	1 Introduction
	2 Related Work
	3 User Studies
	4 Algorithms and Features
	5 Evaluation Methodology
	6 Results
	7 Discussion and Conclusion
	References

