(pdf of full article)

Information is always informative about something, being a component of the output or result of the process. This ``aboutness" or representation is the result of a process or function producing the representation of the input, which might, in turn, be the output of another function and represent its input, and so forth. Consider a common process such as cooking. Baking a cake begins with ingredients and a set of instructions, either written, spoken, or in the mind of the cook. Following the instructions, the cook transforms the ingredients into a sloppy mess which, after an appropriate amount of baking, results in a cake, if one is careful and perhaps lucky.

Examining the cake provides information about both the process and the original ingredients, assuming that the cake may be examined without the act of observation changing the cake. The choice of high quality ingredients or the addition of a special flavoring will affect the outcome, ideally in a beneficial way. Varying the process, such as the amount of time in the oven or the temperature at which the cake is cooked, also changes the final product, and an examination of the final product provides information about the process used as well as about the ingredients. Note that the information will seldom allow one to fully reconstruct the producing process and its input, and any prior knowledge about the process or its input will aid in the reconstruction. The cooking process changes one set of ingredients, one set of materials, into another set of materials: the cake. The change from one set of materials to the cake provides information about the process and the original materials and the baking process. We may speak of the cooking process as carrying information about the original materials.

A cook can't move backwards from a
cooked cake to regenerate the original ingredients;
baking is almost always an irreversible process.
Processes may be totally reversible,
allowing the process to move
backwards from the final state to the initial state.
Reversible processes are such that no
information is unrecoverable (lost)
during the operation of this process; thus,
given the output, one can still move back to the input.
A simple reversible process is one that increments the input by 1 and returns the incremented value.
One can always take the output and,
knowing the nature of the process,
move backward to the unique input that produced the output.
On the other hand, non-reversible processes
may lose information as they operate.
Given the output of a non-reversible
process,
one can't always tell which input produced the output.
The square function that produces the number 4, for example,
could take +2 or -2 as its
*argument*, what it takes as input; knowing the result does not
provide all the information needed to determine the input to the function.
Information about the sign of the
original number is lost when squaring
occurs, making the reversal of the
process not possible for all cases.
Similarly, if the reader is told that
the sum of two numbers is 7, it is impossible to determine whether the two initial numbers were 6 and 1, 4 and 3, or some other combination.
One can imagine a reversible variant of
this function that produces the sum and one of the original numbers.
One can always move from these two outputs back to the original values.

Other types of processes produce information. An interesting phenomena is found at the quantum level in physics. Consider two particles that are produced from a single process such that they are moving in opposite directions. Many pairs of particles produced from a single creating process will each have a characteristic which does not ``take on" a value (for either particle) until this value is observed or measured by instrumentation. Because these particles (will) have opposite characteristic values, measuring the value of one of the particles causes or forces the other particle, no matter at what distance, to take on the opposite value for the characteristic. A measuring process here makes information appear or become available--we try to avoid saying that information was ``created" by the measuring process. The measuring process takes the particles that are valueless in regards to the characteristic as input and produces particles that have values.

All processes produce information: making cakes and measuring characteristics of sub-atomic particles, physical processes and processes commonly understood as non-physical, describable and indescribable processes. An understanding of the information produced by processes requires some understanding of the nature of a process. Processes may be complex, or they may be simple and easily described and studied. All produce information about the input and the process. The author believes that all processes can be described, given enough time and resources. However, even if some processes can not be described it is still useful to recognize the output of the process as ``about" the process itself and the input. Furthermore, the notion of information as the values in the output of a process is helpful in understanding information phenomenon.

Processes consistent with assumptions
defined by mathematicians
may be defined as mathematical functions,
such as those obtained by pressing mathematical operator keys on a calculator.
These functions take one or more *arguments* as input and
*return* a single value.
Each input will produce the same given
output each time a deterministic
function is used, acting mechanically,
always giving the same output from a
given input.
The process of addition, being
deterministic and given common
mathematical assumptions, will
always produce 5 from inputs 2 and
3.
Consider the *increment* function, which returns
the value one more than the amount assigned to the argument. This assignment is referred to as the value *instantiated* or temporarily assigned to the argument.
The increment function may be formally defined as
*f*(*x*) = *x*+1.
Given a valued assigned
to the variable *x* in parentheses, the function will have as
its returned value
the value to the right hand side of the equal sign, that is, *x*+1.
For this function, *f*(2) would return the value (or have the value) 3.

Other functions may have probabilistic characteristics
and may be able to emulate random processes.
The values returned vary depending on occurrences independent of the input.
A coin toss might be emulated by a probabilistic function
which returns the value *heads* approximately one
half of the time.

Processes also may be defined as algorithms, sets of rules to be followed which produce an output, often in a certain order. A function may be thought of as a computer program or mechanical device that takes the characteristics of its input and produces output with its own characteristics. Every process may be defined functionally and every process may be defined as one or more functions. This interrelationship between functions, algorithms, and processes is governed by Church's Thesis, which formally describes the way in which several different descriptive languages or paradigms (e.g., processes, functions, agents, and algorithms) are capable of describing the same processes [KMA82]. For this reason, we can use the terms function, process, and algorithm interchangeably in many circumstances.

Processes always produce an effect - some change in the world - and thus can communicate information about the process and the input. Information occurs when the process produces something. Information is

the value currently attached or instantiated to a characteristic or variable returned by a function,This is graphically shown in Figure 1. We usef(x), or a process. The value returned by a function isinformative aboutthe function's argumentx, or about the functionf(), or about both.

The process and its input cause the information to exist in the output, ignoring for purposes here the claimed ability of some to forsee the future. As with any causal phenomena, the cause must temporally precede the result. The existence of information thus always comes after the process that produced it has occurred.

Two factors affect the information in *y*=*f*(*x*):
the processing function itself and the initial values of
variables such as *x*.These
factors are combined by the process.
The input, when processed,
produce an output that is informative about both the input and the process.
A function transforms or maps the input into an output with each input being ``mapped" into a particular output.

The mapping *f* of a value is
from one domain *X* into another domain *Y*.
Each domain represents a set of possible values,
with *X* being the set of possible values upon which the
function operates and
*Y* the set of possible values that can be produced by the function.
For example, a small domain of male names may be represented as

A function

System information is the set of values
produced by all possible inputs to a function,
*Y*=*f*(*X*), over the domain of *X*.
*X* is the domain of possible messages that might be
transmitted and *Y* the domain of
possible received messages, with the
values in *Y* being the information
about the process and set *X*.
When describing the actions of a function,
one may refer to the operation on the domain *X* as *f*(*X*),
or one may refer to the action being applied to a specific
*x* as *f*(*x*).
For example,
a square root function may be defined as
operating on any positive integer,
while it may also be applied to specific number, e.g. 16.The particular
value *x* is *bound* to *X*, taking a specific value.
That is, the characteristic *X* has in a particular instance,
the value *x*.
The mapping is for all possible values in the domain *X* onto *Y*=*f*(*X*).

Each function physically
implements a *channel*,
a causal mechanism that converts or transmits
values from the initial domain *X* to domain *Y*.
The function itself (as opposed to the value of the function)
represents the information transmission process, while the value of the
function provides information about the function and its input.
System information is based on the relationships between the characteristics' values in the output.
The quantity of information is measured by counting the relationships or a surrogate for the relationships.
As these relations are produced by
functions or processes, and only by functions,
we may claim that
information is contained in and only in the values returned by a function.

What is not information?
Given our definition,
information is not the process itself.
The input to the process is not information
about the process, although it clearly
may be information about *another*
process.
The output is also not
information by itself--the values in the output are
information only in the sense that they are
information *about* the process and
the input, that is, information
in the context of the process and its
input.